Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

General closed-form solutions of the position self-calibration problem

The work in [36] investigates the anchors and sources position self-calibration problem in the 3D space based on range measurements and without any prior restriction on the network configuration. Using a well known low-rank property of Euclidean distance matrices, we first reduce the problem to finding 12 unknowns ascribed in a 3×3 transformation matrix and a 3×1 translation vector. In order to estimate them, we then introduce a polynomial parametrization with 9 unknowns that are estimated by solving a linear system. Afterwards, we identify an intrinsic matrix polynomial system that encodes the solution set of the problem and provide a direct method for solving it. The resulting procedure is simple and straightforward to implement using standard numerical tools. We also show that closed-form solutions can always be obtained when the reference frame is fixed. This is illustrated by adopting reference frames from the literature and by introducing a triangular reference frame whose constraints are imposed only on one position set (anchor or source). Experimental results on synthetic and real sound data show that the proposed closed-form solutions efficiently solve the position self-calibration problem.